Rendezvous Constants

To meet at a special place, one which is unique amongst all others.

In 1964, O.Gross [1] published a short paper introducing this strange constant. Steven
Finch's book [2] was my first and very informed introduction to this magical constant.

Gross’s Theorem concerns closed and bounded subsets of d-dimensional Euclidean

space which are connected. The article will concentrate on subsets of R and R>
where the theorem generates intriguing problems which can be used with students to
help them extend their understanding of algebra, geometry and even calculus in more
advanced cases. Gross's theorem is an excellent example of an advanced
mathematical result which is in itself surprising. The theorem can be explained to
students in the context of new properties of familiar geometrical figures.

Gross’s Theorem

For any collection of points x,, x,,.....,x, € E, there is a point y e E for which the
average distance from y to x,x,,.....,x, is a(E), i.e.
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We emphasize that, although y varies with the collection of points x,, x,.....,x, , the

Rendezvous constant, a(E), works for all collections of points and no other constant
works.

For many familiar figures, the precise value of a(E) is not known explicitly. When
a(E) is known, it’s value generally comes from looking at specific arrangements of
points for small values of 72 . In the classroom finding a(E) and finding the value of y
for given x,,x,,.....,x, € E gives scope for students to experience this advanced
mathematical result.
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For example, start with a straight line of length 10 and place a counter on each end so
that n =2, x, =0and x, =10. See Figure la.

Equation (1) then gives: %[(y -0)+d10—-y)]=a(E)

Hence a(E)=5

Next use a straight line of length 10, with three counters placed at x, =0, x, =1,
x, =10 and n =3. See Figure 1b.

Equation (1) then gives: %[(y -0)+(y-D+A0—-y)]=a(E)

which with a(E) =5 gives y=6.



Finding the position of y for the Rendezvous Constant on the 1-dimensional number

line is an activity suitable for students of all ages and abilities offering challenges,
whether played with real or abstract counters. Students can find y for various values

of n. While doing this they should make a note of any patterns they find,
remembering that the counters need not be placed at distinct points on the number
line.

For n =2 we have seen that a(E) =5. You can show the existence of yin E such

that a(E) =5 for all n by the following proof:
Let x,,x,,.....,x, € E and then consider the continuous average distance function

f(t):lzn]x,. —1], 1€10,10]
niz

As f(O)z%ix,- and f(10)=%i|x,-—10|=10—%i%
i=l i=1 i=1

Then either f(0)<5< f£(10) or f(10) <5< £(0)
Applying the Intermediate Value Theorem gives the existence of y e [0,10] such that
f(y) =5. The same argument shows that a(E) = (p +¢q) for the interval [p,q]

The fact that no other constant will work is most surprising! The proof of this
uniqueness can be found in [3] using a min-max method, which I will not reproduce
here. To give a feel for how this proof is accomplished I will look at a few other cases
of the Rendezvous Constant.

Consider the solid 2-dimensional disc with radius .

Assume a(E) exists. Firstly let n =1 and x, = 0 (placed at the centre). Then for any
yeE, a(E)<$

Next put n =2 and choose diametrically opposite boundary points x, and x,. Then
‘x'Z —xl" =1, and forany yin E, %[‘xi —y‘+‘x'2 - y‘] Zé‘xlz —xl" =1 .So a(E)2>1.

Thus a(E) must equal 1 and is unique.

The perimeter of an equilateral triangle with sides of length 1 can be shown to have a

2+43
6

Rendezvous Constant of . This is a 1-dimensional case, as the points are

constrained to lie on the perimeter of the triangle.
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Firstly let n =3, with the three points x,, x,,x, being the vertices A,B,C of the
3
triangle in Figure 2a. Then %Z|xi —y= %(|BP| +|PC|+|AP)) = %(1 +|AP|). Thisis a

i=1
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minimum when P is the midpoint of BC, so that a(E) >

Secondly, let n =3, with the three points x,, x,, x, being the midpoints D,E,F of each
side. See Figure 2b.

Then %jp@. ] =%(|PE|+|PD|+|PF|) S%(|PE|+|PD|+|PB|+|BF|) =%(l+|PE|).

i=1
2+4/3
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This is maximum when y is at vertex B, so that a(E) <

2+43

the unique Rendezvous Constant as a(E) = 6

. Together this gives

The same method can be used to find the Rendezvous Constant for the perimeter of
all regular polygons [3].

Two other interesting 1-dimensional results are:
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Figure 3

(1) The Rendezvous Constant for the perimeter of a right-angled triangle is equal to
half the length of its longest side. First, take n =1 and let x, be the midpoint of AC.

Then, for any y on the perimeter at P, |x1 - y| < %|AC |,

so a(E) < %|AC|. See Figure 3.

Secondly, take n=2 and let x,,x, be at A and C. Then for any y on the perimeter at

P, %(|AP| +|PC|) 2 %|AC , so that a(E) > %|AC|. Together these show that

1
a(E)=—|AC|.
(E)=-]AC]
(2) The circumference of a circle with diameter 1 has a(E) = 2 . A proof of this can
V3
be found by taking the set of points x; = (3 cos(%),%sin(%)) ,i=0,,..n-1and

. ) 1 n—1 2
showing that, for any y inE, —Z|xi - y| ——asn—>o
n i=0 71-

Other shapes such as the ellipse evade capture, and no exact formula for a(FE) has yet
been discovered.

The Rendezvous Constant is an intriguing place for young minds to meet and explore
magical maths. I have always found that children of all ages and abilities are
fascinated by this result.
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