
Rendezvous Constants 
To meet at a special place, one which is unique amongst all others. 
 
In 1964, O.Gross [1] published a short paper introducing this strange constant. Steven 
Finch`s book [2] was my first and very informed introduction to this magical constant. 
 
Gross’s Theorem concerns closed and bounded subsets of d-dimensional Euclidean 

space which are connected. The article will concentrate on subsets of ℜ  and 2ℜ  
where the theorem generates intriguing problems which can be used with students to 
help them extend their understanding of algebra, geometry and even calculus in more 
advanced cases. Gross`s theorem is an excellent example of an advanced 
mathematical result which is in itself surprising. The theorem can be explained to 
students in the context of new properties of familiar geometrical figures. 
 
Gross’s Theorem  

For any collection of points Exxx n ∈,.....,, 21 , there is a point Ey ∈  for which the 

average distance from y  to nxxx ,.....,, 21  is )(Ea , i.e. 
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We emphasize that, although y varies with the collection of points nxxx ,.....,, 21 , the 

Rendezvous constant, )(Ea , works for all collections of points and no other constant 

works. 
 
For many familiar figures, the precise value of )(Ea  is not known explicitly. When 

)(Ea  is known, it’s value generally comes from looking at specific arrangements of 

points for small values of n . In the classroom finding )(Ea  and finding the value of y 

for given Exxx n ∈,.....,, 21  gives scope for students to experience this advanced 

mathematical result. 
 
 
 

Figure 1a     Figure 1b 
 
For example, start with a straight line of length 10 and place a counter on each end so 

that 2=n , 01 =x and 102 =x . See Figure 1a. 

Equation (1) then gives:  )()]10()0[(
2

1
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Hence  5)( =Ea  

 

Next use a straight line of length 10, with three counters placed at 01 =x , 12 =x , 

103 =x  and 3=n . See Figure 1b. 

Equation (1) then gives: )()]10()1()0[(
3

1
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which with 5)( =Ea  gives 6=y . 

 



Finding the position of y  for the Rendezvous Constant on the 1-dimensional number 

line is an activity suitable for students of all ages and abilities offering challenges, 
whether played with real or abstract counters.  Students can find y  for various values 

of n . While doing this they should make a note of any patterns they find, 
remembering that the counters need not be placed at distinct points on the number 
line. 
For 2=n  we have seen that 5)( =Ea . You can show the existence of y in E such 

that 5)( =Ea  for all n  by the following proof: 

Let Exxx n ∈,.....,, 21  and then consider the continuous average distance function 
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Then either )10(5)0( ff ≤≤  or )0(5)10( ff ≤≤  

Applying the Intermediate Value Theorem gives the existence of ]10,0[∈y  such that 

5)( =yf . The same argument shows that )()(
2
1 qpEa +=  for the interval [ ]qp,  

 
The fact that no other constant will work is most surprising! The proof of this 
uniqueness can be found in [3] using a min-max method, which I will not reproduce 
here. To give a feel for how this proof is accomplished I will look at a few other cases 
of the Rendezvous Constant.  
 

Consider the solid 2-dimensional disc with radius 
2
1 .  

Assume )(Ea  exists. Firstly let 1=n  and 01 =x (placed at the centre). Then for any 

Ey ∈ , 
2
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 Next put 2=n  and choose diametrically opposite boundary points '
1x  and '

2x . Then 
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Thus )(Ea  must equal 
2
1  and is unique. 

 
The perimeter of an equilateral triangle with sides of length 1 can be shown to have a 

Rendezvous Constant of 
6

32 +
. This is a 1-dimensional case, as the points are 

constrained to lie on the perimeter of the triangle. 



  
  Figure 2a    Figure 2b 
 

Firstly let 3=n , with the three points 321 ,, xxx being the vertices A,B,C of the 

triangle in Figure 2a. Then )1(
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minimum when P is the midpoint of BC, so that 
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Secondly, let 3=n , with the three points 321 ,, xxx being the midpoints D,E,F of each 

side. See Figure 2b.  
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This is maximum when y  is at vertex B, so that 
6
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≤Ea . Together this gives 

the unique Rendezvous Constant as 
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The same method can be used to find the Rendezvous Constant for the perimeter of 
all regular polygons [3]. 
 
Two other interesting 1-dimensional results are: 
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Figure 3 

 
 
 
(1) The Rendezvous Constant for the perimeter of a right-angled triangle is equal to 

half the length of its longest side. First, take 1=n  and let 1x  be the midpoint of AC. 

Then, for any y  on the perimeter at P, ACyx
2

1
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 so ACEa
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)( ≤ . See Figure 3. 

Secondly, take n=2 and let 21, xx  be at A and C. Then for any y  on the perimeter at 

P, ACPCAP
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(2) The circumference of a circle with diameter 1 has 
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be found by taking the set of points ( ) ( ))sin,cos( 2
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Other shapes such as the ellipse evade capture, and no exact formula for )(Ea has yet 

been discovered. 
 
The Rendezvous Constant is an intriguing place for young minds to meet and explore 
magical maths. I have always found that children of all ages and abilities are 
fascinated by this result. 
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